AD-A246 154

LT
NAVAL POSTGRADUATE SCHOOL

Monterey , California

£ ECTE Y

THESIS

A PERFORMANCE ANALYSIS OF VIEW
MATERIALIZATION STRATEGIES FOR
GENERAL EXPRESSIONS

by
Curtis G. Barefield Jr.

September 1991

Thesis Advisor Magdi N. Kamel

Approved for public release; distribution is unlimited.

92-04380
co 92 19 y=o . LR

DTIC

]

.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

13 REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved fur public release; distribution 1s unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S})

6b OFFICE SYMBOL
(/f applicable)
55

6a NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

7a NAME OF MONITQRING ORGANIZATION
Naval Postgraduate School

6¢ ADDRESS (City, State, and 2IP Code)
Mouaterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADDRESS (City, State, and 2IP Code)

10 SOURCE OF FUNDING NUMBERS

Progeam tiement NO Project No Lasx NO WOrk Uit Aceessiun

Number

11 TITLE (Inciude Security Classification)

A PERFORMANCE ANALSYIS OF VIEW MATERIALIZATION STRATEGIES FOR GENERAL EXPRESSIONS

12 PERSONAL AUTHOR(S) Barefield, Curtis GusJr.

13a TYPE OF REPORT
Master’s Thesis
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy ur pusition of the Department of Detense or the U.S.
Guvernment.

17 COSATICODES

13b TIME COVERED
From To

14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
1991 September 110

18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP View processing strategies, semi-materialization, test database, view materialization

strategies

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Efficient processing of views is critical to many real world applications such as surveillance systems which support military applications.
This thesis compares the performance of three view materialization strategies: semi-materialization, full materialization and query
modication. This thesis first develops a program Lhat generates datubases according to user specification. Second the generated datubases
are used W conduct an empirical study on the three view materialization strategies using select-project-join and general expression views.
The results of the study indicate that for select-project-join view definitions, semi-materialization rerformed best for higher values of 1, fv,
und all values of fq with the database stored on hard disk. Full materialization performed best for .ower vatues of P, |, and all values of fv
with the database stored in RAM. The results also indicate that the semi-materialization strategy is the best view processing method for
general expressions.

20 DISTRISUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED ﬂ SAME AS REPORT n O1IC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inciude Area code) 22¢ OFFICE SYMBOL
Magdi N. Kamel (408) 646-2494 AS / KA

RITY CLASSIFICATION QF THIS PAGE
UNCLASSIFIED

DD FORM 1473, 84 MAR 83 APR edition mav be used until exhausted

All other editions are obsolete

Approved for public release; distribution is unlimited.

A Performance Analysis of View Materialization Strategies
for General Expressions

by

Curtis G. Barefield Jr.
Lieutenant, United States Navy
B.S., Wayland Baptist University

Submitted in partial fulfiliment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

204 ()
Curtis G. Ba(reﬁeld]; 0

))

Approved by: X0

Magdi N, Knmel, Thesis Advisor

Woachal \Yrffid)

Rachel Griffin, Second Reader

A

David R. Whipple, Chairma
Department of Administrative Scjences

ii

ABSTRACT

Efficient processing of views is critical to many real
world applications, particularly real time applications such
as surveillance systems which support nilitary applications.
This thesis compares the performance of three view
materialization strategies: semi-materialization, full
materialization and query modification. This thesis first
develops a program that generates databases according to user
specification. Second the generated databases are used to
conduct an empirical study on the three view materialization
strategies using select-project-join and general expression
views. The results of the study indicate that for select-
project-join view definitions, semi-materialization performed
best for higher values of P, lower values of 1, fv and all
values of fg with the database stored on hard disk. Full
materialization performed best for lower values of P, 1, and
all values of fv with the database stored in RAM. The results
also indicate that the semi-materialization strategy is the

best view processing method for general expressions.

Accession For -
NTT.. GR&&I §
/ "4 l-‘.-:‘)l D
Unennerueed d
Jusi it Lol iorn
BY o e et
Diat, e 'u.,',‘
iii e -
Avnil\b&Li" (odes
T Tlivail nadfer
Dist pecﬂqx
+

I.

1I.

III.

TABLE OF CONTENTS

INTRODUCTION« ¢ ¢ « ¢« « o « o &
A. BACKGROUND ¢ &« « o« o « &
B. OBJECTIVE ¢« ¢ &« « « .
C. SCOPE AND METHODOLOGY
D. ORGANIZATION OF STUDY

A.

B.

c.

A.

B.

c.

D'

VIEW MATERIALIZATION STRATEGIES . . .

QUERY MODIFICATION

FULL MATERIALIZATION

SEMI-MATERIALIZATION

DATA GENERATION PROGRAM, . .

GENERAL DESCRIPTION

REQUIREMENTS « . .

NOTES ON PROGRAM DESIGN
PROGRAM MODULE OVERVIEW
1. Main Module
2. Time Hack Module
3. Type_ Numeric Module
4. Type Alpha Module

5.
6.

Type_Alphanumeric Module . . .

Bounded_Sequential Array Module

iv

>k W

o o o O\

10
11
12
13
15
15
15
15
16
16
16

Iv.

v.

E‘

F.

7. Random_Generator Module . . .
8. Random_Long_Array Module .

9. Counter Module
10. Generate_Numeric_ Array Module
11. Print Modules
DETAILED DATA AND CONTROL FLOW .

TESTING . . ¢ « ¢ ¢« ¢« ¢ « o o o @

PERFORMANCE ANALYSIS

A.
B.

cC.

SUMMARY OF THE RESULTS FOR THE ANALYTICAL

EXPERIMENTAL SETUP

PERFORMANCE ANALYSIS

1. Model 1 : Select-Project-Join .

a. Results for Database in RAM

b. Results for Database on Hard Disk

c. Discussion of the results for Model 1 .

2. Model 2 : General Expressions

a. Results for Database in RAM

b. Results for Database on Hard Disk

c. Discussion of Results for Model

CONCLUSIONS AND RECOMMENDATIONS . . .

A.

B.

CONCLUSIONS ¢« ¢« « ¢ « o =«

RECOMMENDATIONS AND FUTURE RESEARCH .

2

17
17
17
18
18
18

21

22
22
23
27
27
27
33
37
39
39
44

52

55
55
56

APPENDIX A. DATA GENERATION PROGRAM

APPENDIX B. VIEW MATERIALIZATION SIMULATION PROGRAM

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST .

vi

58

77

98

99

LIST OF FIGURES
Figure 1: Data generation program data flow overview. .
Figure 2: Data generation program parameters and parameter
definitions. 0 0 0 00 e s ...
Figure 3: Data generation program control module
overview. ¢ . ¢ e s e e e o s e e e s o o
Figure 4: View materialization parameter definitions. .
Figure 5: Default values for parameters.
Figure 6: Access paths for relations.
Figure 7: View definitions and query on the views. . .
Figure 8: Profile of database relations.
Figure 9: Total cost per query in seconds vs. the ratio of
updates to the total number of operations P. . . .
Figure 10: Total cost per query in seconds vs. the
selectivity of the view predicate fv.
Figure 11: Total cost per query in seconds vs. the
selectivity of the query on the view fgq.
Figure 12: Total cost per query in seconds vs. the number
of tuples modified by each update 1.
Figure 13: Total cost per query in seconds vs. the ratio
of updates to the total number of operations P. . .
Figure 14: Total cost per query in seconds vs. the

selectivity of the view predicate fv.

vii

10

12

14

23

24

24

26

26

29

30

31

32

34

35

Figure 15: Total cost per query in seconds vs. the
selectivity of the query on the view fq.
Figure 16: Total cost per query in seconds vs. the number
of tuples modified by each update 1.
Figure 17: Total cost per query in seconds vs. the ratio
of updates to the total number of operations P. . .
Figure 18: Total cost per query in seconds vs. the
selectivity of the view predicate fv.
Figure 19: Total cost per query in seconds vs. the
selectivity of the query on the view f@q.
Figure 20: Total cost per query in seconds vs. the number
of tuples modified by each update 1.
Figure 21: Total cost per query in seconds vs. the ratio
of updates to the total number of operations P for
7500 records. ittt e e e 0 e e
Figure 22: Total cost per query in seconds vs. the ratio
of updates to the total number of operations P for
10,000 records. « ¢ ¢ ¢ ¢ o o o o o s o o
Figure 23: Total cost per query in seconds vs. the
selectivity of the view predicate fv on 7500
YeCcordS. . . . ¢ ¢ ¢ e e e 4 e e e e e e o o o o
Figure 24: Total cost per query in seconds vs. the

selectivity of the view predicate fv for 10,000. .

viii

36

37

40

41

42

43

45

45

47

47

Figure 25: Total cost per query in seconds vs. the
selectivity of the query in seconds on the view fq for
7500 records. ¢ i 4 4 e 4 e e e s e e s

Figure 26: Total cost per query in seconds vs. the
selectivity of the query on the view fq for 10,000
records. ¢ . i et 4 e e e e e s e e e e s

Figure 27: Total cost per query in seconds vs. the number
of tuples modified by each update 1 for 7500
recordsS. 4 . e e e e e e e e e s e e e e

Figure 28: Total cost per query in seconds vs. the number
of tuples modified by each update 1 for 10,000

FECOXAS. .« .+ & ¢ o o o o o o s s o o o s o o o o

ix

48

49

50

50

I. INTRODUCTION

A. BACKGROUND

A database is a computer based record keeping system that
contains information used .0 support an organization's
tactical (short range) and strategic (long range) goals. For
example, a database for a sales organization could contain
customer, employee, sales and inventory data.

Several data models are available to organize the
information within the database so that it can be utilized in
an efficient manner. One of the most common data models is the
relational model. This method organizes data in terms of
tables (relations), rows (tuples) and columns (attributes).

Tables can be classified as either base tables or views.
A base table is a table that physically exists in its own
right. A view maybe thought of as a virtual table, in as much,
that it does not (normally) exist within its own right but is
ingtead derived from one or more underlying base tables
[Ref. 1]. The view is stored as a definition in the data
dictionary and is combined with a user's query to retrieve the

requaested data from the base tables.

The use c¢f views allows for the structuring and limiting of
the information retrieved by a given query. This feature
allows the user to receive data that is relevant to the
application and 1limits unauthorized user access to other
critical data.

Recently several proposals have considered storing some
form of the processed view to eliminate the need to evaluate
the view definition from scratch every time it is queried. The
first approach, known as full materialization, stores the
fully processed view as a physical table. This approach has
the advantage of increasing the efficiency of the queries on
the view , but incurs an additional expense of maintaining the
materialized view. To overcome this problem, a second
approach, called semi-materialization, was proposed whereby a
partially processed rather than a fully materialized view is
stored. This approach redundantly stores data that represents
selections and projections of individual relations, thus
allowing efficient evaluation of the view definition while
being easy to maintain.

View performance pronessing is directly related to the
performance of real time applications such as surveillance
systems which support military operations. These systems
receive periodic environmental updates from various sensors
which are used to evaluate a view. Any delay processing the
sensor data, which is typically time sensitive, into usable

information could render the information late and unusable.

Faster view processing used in conjunction with real time
systems will significantly improve the response time of these

systems.

B. OBJECTIVE

The objective of this thesis is to compare empirically the
performance of three view processing strategies: query
modification, semi-materialization and full materialization.
The research attempts to verify the analytical results which
have indicated that, in general, the semi-materialization
strategy is the best method for processing general expression
views [Ref. 2]. To accomplish this goal, this research
develops a Data Generation Program to produce test databases
according to user specifications. The test databases are then
used to compare the performance of three view processing
strategies for two view expressions and under different
parameter settings, wusing a simulation program that was
developed by Lt Jesse South [Ref. 3]. Performance
results were then collected, analyzed and plotted for

presentation in this thesis.

SCOPE AND METHODOLOGY

This thesis accomplishes the following:

1. Develops a generic database generating program using
ANSI C to generate test databases according to user
specifications.

2. Compares the performance of three view materialization
strategies for select-project-join expressions with the
database stored in Random Access Memory (RAM) and hard
disk.

3. Tests the three view strategies using general
expressions with the database storea on RAM and on

hard disk under different parameter settings, collecting
the results and comparing them with analytical results.
4. Uses the results to draw conclusions and determine the

conditions under which each strategy performs the best.

ORGANIZATION OF STUDY

This thesis is organized as follows. Chapter II overviews

the three view processing strategies. Chapter III provides a

detailed description of the Data Generation Program. Chapter

IV presents the performance results of the empirical study and

compares them to the results of the analytical study. Chapter

V presents conclusions based on the study and suggests areas

for future research.

II. VIEW MATERIALIZATION STRATEGIES
The purpose of this chapter is to provide a general
overview of the three view materialization strategies - query
modification, semi-materialization and full

materialization.

A. QUERY MODIFICATION

The conventional method for view processing for queries is
query modification. This method stores a view definition in
the data dictionary. This view definition is retrieved from
the data dictionary when a query is issued on the view and
combined with the user query into an equivalent query on the
underlying base tables. This query is subsequently processed,
and the results returned to its user. Consider the following
database schema:

EMP(E#, ENAME, ADDRESS, SALARY, TITLE)

POS(E#,S#, LEVEL)

and the corresponding view definition COMBATSTAFF:

Ile. ENUM, 6. ENAME, 6. SALARY
(op.LEVEL> 3 (EMP»<POS))

Now when a query is issued against COMBATSTAFF:

Ilc. ENUM, c. ENAME (o c. SALARY>30, 000 (COMBATSTAFF))

The view mechanism translates the query into the equivalent

query on the base relations:

Ile. ENUM, 6. ENAME
(ce.salary>30,000Ap. LEVEL>3 (EMP»<POS))

The resulting query is optimized to determine the best access

path and then executed.

B. FULL MATERIALIZATION

This method creates an actual table based on the view
definition. The resulting table is used to perform user
queries, thus avoiding the cost of repeatedly retrieving a
view definition and creating equivalent queries on the base
relations. This method works quite well for processing
queries, but is costly when the frequency of update is high,
since the full materialized view must be maintained.

Updates are defined as a transaction which performs a
sequence of tuple insertions, tuple deletions, and tuple
modifications on a relation(s). Suppose that a set of tuples
A 1is added to a relation and a set of tuples D is deleted from
the same relation. The tuple sets A and D represent the net
change made to that relation. In that case, a tuple which is
inserted and deleted in the same transaction would not appear

in either tuple set A or D.

Using this method, the net results of an update
transaction could be used as a basis for a differential
algorithm to update the materialized view.

In fact this method works quite well using select-project-
join expressions because selections and projections can be
performed over unions. Using the view definition in the
previous section and limiting the updates to the POS relation

for simplicity, the view expression becomes:

COMBATSTAFF'=COMBATSTAFF-lle. ENUM, o . ENAME, 8. SALARY
(p.LEVEL>3 (D,»POS))

Ulle. ENUM, . ENAME, e. SALARY (p. LEVEL> 3 (A,»<POS))

The above expression shows that the fully materialized view
can be maintained by computing the last two expressions and
inserting them into or deleting them from the materialized
view COMBATSTAFF.

Unfortunately a similar expression can not be derived if
a general expression is used in the view definition. At
present no efficient differential algorithm exists for
performing incremental updates for general expressions. This
fact necessitates that a complete re-evaluation of the view
expression be accomplished after each update to the base
relations. The cost of re-evaluating a fully materialized view
can be prohibitive as the frequency of updates for the base
relations increase, which is the chief problem associated with

this method.

C. SEMI-MATERIALIZATION

This method stores redundant subsets of carefully chosen
data from individual base tables. These redundant subsets are
stored as actual tables and represent an intermediate state of
computing the view. Each subset is a projection and selection
of the base table(s) thus making the construction of the view
less costly than using the base relations.

The redundant data is clustered on the join attribute(s)
which allows for the efficient construction of the view.
Updates to the base relations are screened to determine if the
update affects the redundant tables. If it does, it is
inserted into or deleted from the appropriate redundant
tables.

The following redundant subsets would be stored to support

this technique:

EMP’=[le. ENUM, e. ENAME, e . SALARY (EMP)
pos’allp. ENUM(op. LEVEL>3 (POS))

This view is combined with a user query to form an equivalent

query on the redundant relations:

Ic. ENUM, c. ENAME, c. SALARY (EMP/»<POS’)

when queried the following equivalent view is created using

the redundant tables and the view definition:

[le’. ENUM, ¢/. ENAME (e’. SALARY> 30,000 (EMP/»«P0OS"))

This method becomes more complicated as additional
insertions and deletions occur. Since more than one base
relation may have been the source of the tuples used in the
materialized view, it becomes increasing difficult to
determine, when or if a record should be removed from the
view.

To alleviate this problem each materialized view must keep
a duplicate count of the number of tuples contributed, by each
redundant subset, to the tuples in the materialized view when
the subsets are joined. The count should be incremented or
decremented depending on the transaction until the count

becomes zero.

III. DATA GENERATION PROGRAM

The purpose of this chapter is to describe the Data
Generation program. According to user specifications the
program generates text files that are used subsequently to
build the test database. As shown in Figure 1, the program
reads control information from a text file created by a user
or generated by the simulation program and generates the
specified text files. The program allows the user to control
the number of records (cardinality of the relation), the data
type (ALPHA, NUMERIC or ALPHANUMERIC characters), the size of

each field and the number of fields generated for each record.

TEXT FILE

data gen pgm

output file

Figure 1: Data generation program data flow
overview.

10

The process to generate the data is hidden from the user
by using a fixed format control file as the user interface to
the program.

The program is written in ANSI C to increase portability
of the source code and to minimize the changes necessary to
transfer the program to a mini or mainframe environment. The
maximum size of the text file generated by the program is
limited only by the secondary storage available on the

platform in use.

A. GENERAL DESCRIPTION

The Data Generation program receives control data from the
text file "DATA_IN". The information in the control data file
is effectively divided into two sections. The first section
determines the number of records, fields per record and the
name of the output file. The second section defines each field
within the record by type of information for the field (Field
Type:Alpha, Numeric or Alphanumeric): the number of characters
for each attribute (Field Width): the upper and lower bounds
for any arrays and the incremental value used for counters.
Data Generation program reads the data into a set of linked
lists which are passed to the control modules by the main

module to create each record.

11

B. REQUIREMENTS

The requirement for the Data Generation program was based
on a user request that a new generic data generating program
be written in the C programming language to replace the

previous database generating program.

SAMPLE INPUT FILE
300 5 ENP_DATA ASRDI1T
A RECORD STRUCTURE B. FIELD STRUCTURE
1. NUMBER OF 1. FIELD TYPE
RECORDS A ALPHA Myl
N: NUMERIC BOUND
2. NUMBER OF 0: ALPHA-
FIELDS NUMERC
3700 FLE 2FELDWIOTH 5, INCREMENT
S.SIELD INFO 6. ARRAY
B: ARRAY e
R: RANDOM
D: DEFAULT

Figure 2: Data generation program parameters and parameter
definitions.

12

The program accepts the following inputs and generates a
text file used to create test databases:

1. Number of text files required.
2. Number of records per text file.
3. Name of the text file.
4. Number of fields per record.
5. Size of each field.
6. Type of information in each field.
7. Number of distinct values in each field.
8. Upper and lower limits for the fields.
9. Input reference for randomly generated characters.

To simplify the performance analysis several
assumptions were made about the data generated for the test
database. The first assumption was that the values for each
field in the column were uniformly distributed over the range
of values in the column. The second assumption considered each

value in a given column to be independent of the values in the

other columns.

C. NOTES ON PROGRAM DESIGN

The requirement for maximum program flexibility dictated
a "layered" design approach be used, creating individual
primitive modules to produce the varied types of output data

requested by the user.

13

To keep the coupling between the modules as loose as
possible, the use of global variables is minimized and when
feasible, only a single record structure is passed between

the called and calling modules.

g'HEU)SﬂHKﬂURE
MAIN MODULE .
PASSES CONTROL (UNK LIST)
& RECORD
8. INCREMENT AND
TYPE 19 TYWPE 1 TYPE
NUMERIC ALPHA ALPHA -
PRIMITIVE 1**%?
PRIMITIVE OUTPUT
PRIMITVE MODULES 111 PRIMITIVE MODULES 121
GENERATE AND PRINT GENERATE AND PRINT
QUTPUT TO TEXT FILES OUTPUT TO TEXT ALES

Figure 3: Data generation program control module
overview.

Each primitive module prints its output directly to the
output text file with the exception of the
generate_numeric_array module which returns its numeric output
to the random_generator module for conversion to alpha

characters, if required.

14

This method was chosen after trial and error as the best
method for facilitating the tracing of data and control flow
through the modules.

The rand() C library function was used to generate random
data. Two C language record structures were used to establish
the command language between the data generation program, the

control file and the view materialization simulation program.

D. PROGRAM MODULE OVERVIEW
A brief description of each module is provided to clarify
the control and data flows that are described in Section E.
1. Main Module
The main module opens and closes the input-output
files, loads the control data into the record structures and
direc*s the flow of the control data to the applicable modules
for data generation.
2. Time Hack Module
The time hack module uses the systei. clock to compute
the base reference for the generation of random alpha and
numeric output values.
3. Type_Numeric Module
The type_numeric module is called by the main module
to generate a numeric string, or call the sequential counter,

random_generator or the bounded_ sequential_array modules.

15

4. Type_Alpha Module
The type alpha module is one of three process control
modules used to determine the type of characters in a field.
The module receives its input in the form of a record
structure passed from the main module to generate a string of
¢lpha characters, or to call the random_generator or the
bounded_ sequential array modules.
5. Type_Alphanumeric Module
The type_ alphanumeric module is the 1last process
control module and generates a single variaole length string
of alpha and numeric characters when called by the main
module.
6. Bounded_Sequential Array Module
The bounded_sequential_ array module, which is called
by either the type_alpha or type_ numeric modules, receives
three numeric values from the calling module. The values
determine the array lower bound, the number of array elements
and the incremental value of each element. The rand() function
is used to generate a random index number to select the array

element value that is printed in the output file.

16

7. Random Generator Module

The random _generator module is called in the same
manner as the bounded sequential array module. The module
determines if a character or numeric value is required, calls
the generate numeric_array module to produce the required
value and prints the value or character in the output file.

8. Random_Long Array Module

The random_long array module is called by the
type_numeric module to produce a random numeric output
employing the same rand() function that was used in the
bounded sequential array module. The module computes the array
size and determines if the number of array elements exceeds a
preset limit.

The module will compute the output value using the
upper bound value and the rand() function to conserve main
memory rather than allocating space for the array if the
preset limit is exceeded. This method was used to prevent the
program from using memory unnecessarily.

9. Counter Module

The counter module is called by the type numeric

module and uses global values to generate up to three

independent sequential counters.

17

10. Generate Numeric_Array Module
The generate_numeric_array module is called by the
random_generator module to produce a second independent
bounded array similar to the bounded_sequential_ array module
except the random numeric output from the module is returned
to the calling module for possible conversion to an alpha
character.
11. Print Modules
The print modules are all used to send debugging data
to a text file called "output.txt" that is controlled by a

toggle called "TROUBLESHOOTING".

E. DETAILED DATA AND CONTROL FLOW

The Data Generation Program is called by a batch file
which reads the control file "DATA_IN". The input data is
formatted to conform to the two record structures declared in
the definition section of the program.

Once the input data is loaded into the program, the
control file is closed and the output file is opened. The
output file name is part of the control file data. Each record
structure is read and control is routed to the appropriate
control module based on field type (ALPHA "A", NUMERIC "N"

and ALPHANUMERIC "0").

18

The type numeric module will be used to trace the first
data flow through the modules. the second data flow be traced
using the type_alpha module and the last data flow will use
type_alphanumeric module.

"N" is the field type read by the main module in the
attribute record structure. Control and the attribute record
structure is passed to the type numeric module by the main
module. The attribute record structure is read by the module
to determine the field information (BOUNDED SEQUENTIAL ARRAY
"B", RANDOM GENERATOR "R", COUNTER "S", RANDOM LONG ARRAY "X"
or DEFAULT "D").

The field information type read by the module is "B" and
the bounded_sequential array module is called. The
type_numeric module converts the 1lower and upper bound
character strings to numeric values which are passed to the
bounded_sequential_ array module along with the incremental
data. The module uses the input data to determine array size,
the lower bound and increment.

Memory is allocated and the array is filled. The rand()
function and the array size are used to compute an random
index number to select the array element value to be printed

in the applicable field in the output field.

19

Control 1is returned to the main module and the next
attribute record structure is read. "A" is the next field type
read by the main module: control and the attribute record
structure is passed to the type alpha module.

The type_alpha module reads the attribute record
structure. "R" is the field information read by the module.
The random_generator module is called, the lower bound
character and upper bound character strings are read by the
type_alpha module. The character strings are converted to
numeric values and passed along with the incremental data to
the random_generator module.

The random_generator module determines if the integer
values represent alpha characters or numeric values. In this
case, the values represent the upper case letters "A"(lower
bound), "R" (upper bound), and the increment value of 1. The
random_generator computes the array size, and passes the
values to the generate numeric_array module to generate the
array.

The generate_numeric array module allocates and fills the
array. The rand() function is used to select an array value
which is returned to the random_generator module. The value is
converted to an alpha character in the random_generator module

and printed in the applicable field in the output file.

20

Control is returned to the main module and the next
attribute record is read. "0" is the next field type read by
the main module: control and the attribute record structure is
passed to the type_alphanumeric module.

Unlike the other control modules the type alphanumeric
module does not call other modules. The attribute record
structure is read to determine the total number of alpha and
numeric characters required. Total field width is the
aggregate of the two character strings.

The characters are genergted sequentially "A - Z" for the
alpha string and "0 - 9" for the numeric string. The
characters are printed to the output file one at a time until
the field is completed.

The process for the other field information types is
similar for both the type_alpha and type_numeric modules.
ERROR handling is limited to verification of the input data

and the opening of the required input and output files.

F. TESTING

Testing was conducted on each module when it was created
or updated. Small text files which simulated the input data
for the particular module being tested was modified to test
each module over a wide range of values. The entire program
was tested using a variety of control files to create text
files from 50 to over 60,000 records with at least 10

attribute fields per record.

21

IV. PERFORMANCE ANALYSIS

The purpose of this chapter is to describe and report the
results of the empirical study conducted on the three view
materialization strategies -- query modification, full
materialization and semi-materialization -- using select-
project-join (Model 1) and general expressions (Model 2).
Performance testing was conducted on databases stored 1in
Random Access Memory (RAM) and on a hard disk using a computer
with an INTEL 80386SX processor running at 20 MHz. The
simulation program is written in ANSI C with embedded SQL

commands to access the INGRES relational database system.

A. SUMMARY OF THE RESULTS FOR THE ANALYTICAL MODEL

Review of the results for the analytical model indicate
that view processing strategies are most sensitive to the
frequency of updates (P), the selectivity of the view
predicate (fv), the selectivity of the query predicate (f£fq)
and number of tuples (1) [Ref. 2). For select-project-join
expressions, and except for high values of P, both full and

semi-materialization performed better than query modification.

22

Higher values of P, fv,1l or lower values of fq favor semi-
materialization over full materialization. At lower values of
P, fv, and 1 full materialization is slightly better than
semi-materialization as the update costs tend to be low.

For general expressions semi-materialization performed
better for all parameter values except for very low values of
P. The absence of an efficient differential algorithm for
performing incremental updates makes the use of general

expression an unattractive alternative.

B. EXPERIMENTAL SETUP
The parameter definitions, parameter default values,
access paths for the relations, query and view definitions and
the profiles of the database relations which were used for
the experiment are shown in Figures 4 through 8, respectively.
N Cardnally of the Relaiion
K Number of updaie transactons on the base relations
Total number of tupies modified by each updele transaction
Number of dmes the view is quaded

Probabillity that a given operaion is an update
Seloctvily of the view predicate (iraction of tuples In view)

fq SelectMly of query predicale {iracton of tuples retreived by
The quary on the view)

Figure 4: View materialization parameter

definitions.

<L v o

23

[] 8000 3 100
[] 28] 100
| o4 0.8 v Q.1
1 .1
Figure 5: Default values for parameters.
Relation(s) Access path
EMP Clustersd index on join fleld o_num

POS Clustered Index on level

Clustered Index on join fleld ®.num

POS Clustersd index on level

Figure 6: Access paths for relations.

The parameters that were considered for the sensitivity
analysis include the following for each model tested:

1. The fraction of updates to the total number of
operations (P). This parameter is controlled by varying the

number of update transactions on the base relations (k) and

the number of times the view is queried (q).

24

2. The selectivity of the view predicate (fv) or the
fraction of tuples retrieved in the view with regard to the
control relation POS. This fraction is controlled by varying
the value v_threshold (view_cut) - that is, the predicates in
the view definition.

3. The selectivity of the query predicate (fg) or the
fraction of tuples retrieved by the query on the view. The
fraction (fq) is controlled by varying the value q_threshold
(query cut) - that is, the predicate in the query.

4. The number of tuples modified by each transaction (1).
This parameter is controlled by varying the number of tuples
per update generated by the data generation program.

5. The number of records in the base relation(s)
(cardinality of the relation).

Performance data was collected for view definitions using
select-project-join and general expression predicates with the
database stored in RAM and on hard disk.

The database and the data generation program, view
materialization simulation program and various Ingres program
files were placed in separate sub-directories on the hard disk
or in two similar RAM drives (4MB for database and 1.8MB for
the other files) to determine if eliminating the hard disk
access time (28ms average) would significantly improve the

performance of the view processing strategies.

25

EXPRESSION

CREATE VIEW FULL_VIEW
SELECT E_NUM, ENAME, SALARY, KEYNO
WHERE e.E_NUM = pE_NUM AND
p.LEVEL >= VIEWCUT

CREATE VIEW FULL_VIEW
SELECT E_NUM, ENAME, SALARY, KEYNO
WHERE EXISTS

(SELECT *
WHERE ¢.E_NUM = p E_NUM

P_O.KEYNO = p_I.KEYNO
AND p_IL.LEVEL >= VIEWCUT)
SELECT E_NUM, ENAME, KEYNO

WHERE SALARY >= QUERYCUT
VIEEW &

VIEW 1:

VIEW 2

QUERY

VIEW 1
LEDEND
Figure 7: View definitions and query on the views.

Two types of operations were conducted on the test

a series of update transactions on the base

database,
relations which modified a varying number of tuples per update

and queries issued against views.

CARD (POS) = 8000

e L LEVEL KEY® ACCINFO
VAL ®00 3 10 28 8000
Sz Iz =)] 2 Cas

CARD (EMP) = 800

[OF ENAME ADDAESS SALARY TITLE JOBDESC
VAL 800 [] 800 800 10 800 800
oNrs 12 = ca c70 4 co0 o0

26

Figure 8: Profile of database relations.

The average elapsed time per query for all updates and

gueries is used to compute the performance of each strategy.

C. PERFORMANCE ANALYSIS

This section discusses the performance of the three view
processing strategies for view definitions which used select-
project-join and general expression predicates. These
strategies were applied to the test database(s) produced using
the EMP, POS and SKILL text files generated by the data
generation program. The reporting method will consist of
reviewing the results for each parameter used in the
sensitivity analysis of the two models.

1. Model 1 : Select-Project-Join

MODEL 1 uses the following view definition with a

select-project-join predicate for the three view processing

strategies:
Ile. ENUM, e . ENAME, @ . SALARY (p. LEVEL2viewcut (EMPr<POS))

a. Results for Database in RAM
In this section, the results of the sensitivity
analysis for Model 1 for the database in RAM is presented.
Figures 9 through 12 show the results for model 1 for the four
different parameter values when using the ram disk.
In general, the trends computed for the analytical
model were supported by the empirical results for the runs

with the database stored in RAM.

27

The sensitivity analysis for the probability of
update parameter shows semi-materialization performs best for
values of P greater than 0.5 with the database in RAM.

Full materialization was the clear winner for values of P less
than 0.5.

This tradeoff occurs because for values greater
than 0.5 <the cost o0f processing queries for full
materialization averages .35 seconds while the cost to perform
updates averaged .7 seconds. The cost per query for semi-
materialization averaged .8 seconds but the cost for updates
averaged to only .2 seconds.

As the number of updates increased the update cost
for semi-materialization was quartered while the cost for full
materialization doubled.

The average cost for query modification was 4.3
second per transaction. Query modification exhibited the same

trend as the analytical model.

28

7-
6 /
84
4
3<
Lagend
2 % Query Modification
N O Semi Meterializetion|
O Full Meterigiization
03 01 02 03 04 05 08 07 o8 08 1
Ratlo of updeses (P13)

Figure 9: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

For the selectivity of view parameter, the
performance of the full and semi-materialization strategies
were virtually identical for values of fv less than 0.3. The
performance of semi-materialization improved over the
performance of full materialization as the value of fv
increased.

The average cost per update was .78 seconds and
cost per query was .63 seconds for full materialization for
values of fv 1less than 0.3. As expected, the cost for
performing updates increased significantly as the value of fv

increased.

29

“Total ¢

18+
Legend

10 ¥ Query Modificetion
8- /Ds.mm
Wommm

08 61 02 63 04 05 08 07 o8 09 1

Selactvity of the view (FV17)

Figure 10: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

The average cost of updates for semi-
materialization was .76 seconds while the cost for queries
averaged 3.26 seconds over the entire range of values for fv.

The cost for query modification increased as the
size of the view increased over the range of fv as expected.
The empirical results for query modification were virtually
identical to the analytical model trends.

Full materialization provided the best performance
for all values of fq for the strategies with the database in

RAM.

30

The average cost per update for full
materialization was .7 seconds while the cost per query

averaged 2.2 seconds.

10,

Totad
»

Legend
2 ¥ Query Modification
O Semi Materalizefion
< Full Meterialization
0301 02 03 04 o8 06 07 o8 09 1

Selsctivity of the query (FQ9)

Figure 11: Total cost per query in seconds vs. the
selectivity of the query on the view fgq.

The average cost per update for semi -
materialization was .25 seconds but the cost per query
averaged 3.7 seconds. Semi-materialization conformed to the
trends indicated in the analytical results for fq.

The average cost per transaction for query
modification was 6.2 seconds which conformed to the

performance noted for the analytical model.

31

There was very little difference between the
performances of semi- or full materialization over the entire
range of values of 1 - number of tuples per update for the
database in RAM.

Full materialization performed slightly better for
values of 1 less than 40. Semi-materialization performed best
for values of 1 from 50 to 80 and greater than 90.

The average cost per update for semi-
materialization was .32 seconds while the average cost per
query was .79 seconds for all values of 1. The average cost
per query for full materialization was .36 seconds and average
cost per update was .87 seconds over the same range of 1

values.

Lagend

. ey ¥ Quary Modfication

= O Semi Materielization
O Ful Meteraltzation

% 10 D % ® H ® 0 ® ® 1%
Number of tuples per updels (U10)

Figure 12: Total cost per query in seconds vs. the
number of tuples modified by each update 1.

32

Full materialization's performance for the 1 parameter far
exceeded the expectations indicated by the analytical model.
Query modification's performance on the analytical model
indicated a slight improvement for higher values of 1 which
was not supported by the empirical data.

b. Results for Database on Hard Disk

In this section the results of the sensitivity
analysis for Model 1 on hard disk are presented for comparison
to the results for the three strategies with the database in
RAM.

For the probability of update parameter, the
transition to semi-materialization's performance exceeding
full materialization occurs at 0.34. This indicates, as
expected, that disk access time when added to the cost of
performing updates has an significant impact on the
performance of full materialization.

Semi-materialization provides the best performance
for values of P greater than 0.34. The figure shows a less
steep increase for values of P greater than 0.7 than the
results with the database in RAM. Note, however that the
processing cost in RAM is less than 50% of the similar cost on

the hard disk.

33

”-‘
”.
g 20
181
. —
10+ Legend
% Query Modificetion
5 0O Semi Materislization
¢ Full Measrialization
0% 01 02 03 04 05 06 07 02 09 1
Ratio of updates (PY)

Figure 13: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

For the selectivity on the view parameter, semi-
materialization performed best for all values of fv. The
difference in the performance appears to be due to the
additional cost added for accessing the disk to update the
base relation plus the additional disk accesses required to
update the view.

In general the trends are identical to the trends

exhibited by the analytical and RAM models.

34

Total cosquery
%3

X Quuyllodmedm
10- O Semi Matertakzation
8 & Full Muterialization

°o o.1o.zo.30.40.so.co.7o.ao.07

Selsctivity of the view (VWS)
Figure 14: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

Semi-materialization was the best performer for
values of fq that were less than 0.4. Full materialization
performance was better for values greater than 0.4. The
performance for both semi- and full materialization was
virtually identical for values of fq between 0.2 and 0.4.

The trends for the three strategies conform to the

results shown for the analytical model.

35

20,

18-

b

!
Legend

51 X Query Modification
O Semi Matedalization
O Ful Meteraltzation

O 01 02 03 04 05 06 07 08 08 1
Selectivily of the query (QRS)

Figure 15: Total cost per query in seconds vs. the
selectivity of the query on the view fq.

Semi-materialization was the clear winner for all
values of 1. Full materialization 's performance improved for
values of 1 greater than 80 but did not out perform semi-
materialization. Query modification's performance conformed to
both the analytical and RAM models. The results for both
semi- and full materialization exceeded the results shown for

the analytical model.

36

0 10 20 0 4 & 6 70 8 % 110

Number of tuples per update (TUP3)
Figure 16: Total cost per query in seconds vs. the
number of tuples modified by each update 1.

c. Discussion of the results for Model 1

In general the empirical data supported the
conclusions presented in the analytical review of the view
materialization strategies [Ref. 4].

Semi-materialization's performance was superior
for higher values of P, lower values of 1, fv and all values
of fq for the database on the hard disk.! Semi-
materialization performed best with the database in RAM for
values of P greater than 0.5, fv greater than 0.3 and for 1

values between 50 to 80 and greater than 90.

! semi-materialization was outperformed by full
materialization for only the first value of fv while using the
RAM disk drive.

37

This was due to the low cost per update for semi-
materialization when compared to the other strategies. The
cost advantages of performing queries and updates on the
redundant subsets is due primarily to the fact that any
transactions performed using semi-materialization are on
smaller table(s) than the base relations.

Full materialization performed best for lower
values of P, 1 and for all values of fq for the database on
RAM. As expected full materialization performed best when the
primary transaction was a query. Surprisingly, full
materialization overall performance on RAM was quite good even
for the parameters for which it was not the best performer.
For example, in Figure 12, full materialization's performance
was nearly identical to semi-materialization over the entire
range of values for 1. Similarly, full materialization's
performance was not significantly worst than semi-
materialization for values of fv as shown in Figure 10. Full
materialization performed best with the database on hard disk
for P less than 0.34 and for fq values greater than 0.4.

Query modification outperformed full
materialization for values of P greater than 0.82 for RAM and
0.84 on the hard disk. This was due to the very high cost per

update for full materialization as discussed previously.

38

2. Model 2 : General Expressions
MODEL 2 uses the following general expression view

definition expressed in relational calculus:

e.ENUM, e . ENAME, e . SALARYwhere3d
(e. ENUM=p. mnm/\p LEVEL>viewcut (EMP»POS))

a. Results for Database in RAM

The results for the database in RAM are displayed
in Figures 17 through 20. The trends exhibited here are
noteworthy since the performances for all the strategies
exceed the results obtained from the earlier experimental data
but tended to conform to the analytical model [Ref. 4].

The results for the probability of updates
parameter are displayed in Figure 17 and indicate semi-
materialization outperformed query modification for all values

of P. It also outperformed full materialization for values of

P greater than 0.1.

39

€0,
60
g 40
0
1
20 - Legend
% Query Modifioation
101 . 00 Semi Meterislization|
——— © Rl Materialtzation
0% 01 02 03 04 05 08 07 o8 08 1
Ratio of updutes (P12)

Figure 17: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

Semi-materialization's average cost per update was
0.22 seconds while its cost per query averaged 5.73 seconds
over the entire range of P values. Full materialization
averaged a cost per query of 0.31 seconds but its advantage
was offset with an initial update cost of 62.89 seconds. Query
modification's cost per transaction was 33.65 seconds.

Semi-materialization was the best performer for
all values of fv, which coincided with the trend for the
analytical model. The simulation results for query
modification and full materialization were better than the

results for analytical model for all values of fv.

40

Semi-materialization's cost per update averaged
0.68 seconds and its average cost per query was 21.3 seconds
over the entire range of fv values. Full materialization
averaged 1.5 seconds per query and its cost per update
averaged 270 seconds. Query modification's cost per

transaction averaged to 51.7 seconds for fv values.

180 - Legend
% Query Modification
o e O Sem! Materiakzation|
——o—— O Full Matriaiization
05 o1 02 03 04 05 08 07 08 09 1
Selectivity of the view (FV18)

Figure 18: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

The analysis for the selectivity of the query
parameter shows that semi-materjialization was the most cost
effective strategy for processing queries for general

expressions.

41

The analytical and empirical results for query
modification were nearly identical for the entire range of fq
values. Full materialization proved to be the worst performer
of the strategies, as displayed in Figure 19.

Semi-materialization cost per update for fq
averaged to 0.23 seconds while its average cost per query was
20.7 seconds. The average cost per update for full
materialization was 63.5 seconds and its cost per query was
1.3 seconds. Query modification's cost per transaction was

46.1 seconds.

Yo conauety
8

”d
I
20 Legend
% Query Modification
104 O Semi Materislization

< Rl Materialzation
01 02 03 04 O5 08 07 08 09 1
Selecivity of the query (FQS)

Figure 19: Total cost per query in seconds vs. the
selectivity of the query on the view fq.

42

Figure

20 shows

that

semi-materialization

outperformed full materialization and query modification for

all values of 1.

CORIS DIt QuBry
&
Y

Legend

= 201 % Query Modification
104 O Semi Meterlalization
. - - « & Ful Materialization
930 % % 4« @ ® 7 © %0 1%
Namber of wuples per updaw (US)

Figure 20: Total cost per query in seconds vs. the
number of tuples modified by each update 1.

Semi-materialization's average cost per update was

0.28 seconds and its cost per query was 5.7 seconds for all

values of 1.

seconds per query and 63.2

seconds

Full materialization's cost averaged to 0.32

per update. Query

modification's transaction cost averaged 33.7 seconds.

43

The slight increase in performance cost over the

entire range of 1 anticipated by the analytical model for
semi-materialization as the number of tuples per update
increased was not supported by the simulation results.
Query modification and full materialization conformed tou the
results plotted for the analytical model [Ref. 4].

b. Results for Database on Hard Disk

In this section the results of the sensitivity
analysis for Model 2 on hard disk are presented. Figures 21
through 28 show the results for model 2 for the five different
parameter values when using the hard disk.

Unlike the experiment conducted in RAM for the
three view processing strategies, the cardinality of the POS
relation will be varied from 7500 to 10,000. The methodology
used to conducting the sensitivity analysis for the four other
parameter values (P, fv, fq and 1) was exactly the same as the

methodology used for the experiment conducted in RAM.

44

The results for the probability of updates
parameter is displayed in Figures 21 and 22 shows that semi-
materialization out performed query modification over the

entire range of P values. Its performance was better than full

materialization for values of P greater than 0.1.

“-
2280
m.
170
i«m-
1260
2 000
- T
5001 O Semi Mawsdalzation
280 { S Full Materislization
OFTah oZ o5 0% o% o5 o7 o o
Ratio of updates (P16)

Figure 21: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P for 7500 records.

Figure 22: Total cost per query in seconds vs. the
ratio of updates to the total number of operations

P for 10,000 records.

45

The reason for semi-materialization performance is
its low cost per update which offset its average cost per
query. For an cardinality of 7500 records, semi-
materialization's average cost per update was 1.55 seconds and
19.82 seconds per query. Its average per update for an 10,000
record cardinality was 3.41 seconds with a cost per query of
21.21 seconds.

Full materialization performed best for a P value
of 0.1 or less for both cardinality values but the extremely
high cost of its first update (250 seconds for 7500: 417
seconds for 10,000) quickly overcame its cost advantage for
processing queries.

Query modification outperformed full
materialization for P greater than 0.2 because of full
materialization high cost per update.

Semi-materialization outperformed both query
modification and full materialization over the entire range of
fv values. The cost per update for semi-materialization with
a cardinality of 7500 was 3.7 seconds and its cost per query
was 51.2 seconds for all values of fv. Semi-materialization's
cost per update for a cardinality of 10,000 records was 7.1
seconds while its cost per gquery was 59.0 seconds. Query
modification cost per transaction averaged 102 seconds for

7500 records and 180 seconds for 10,000 records.

46

Full materialization cost per update increased at a rate of
150% for 7500 records and doubled for 10,000 records as the

size of the view increased.

2000
1780
1600 A
iiww
1000 -
2
760 Legend
800 » Query Modiioation
280 - O mumnr
—= <o Full Mawrisiization
° -— ——

01 02 03 04 08 08 07 O08 OO 1
Solvctiviy of the view (FV19)

Figure 23: Total cost per query in seconds vs. the

selectivity of the view predicate fv on 7500

records.
2000 -
2800 |
2000 4
;1un
3
1000 Legend
3 Query Modifostion
€00 - nmmJ
—« o Pull Materisitzation
L Seamge—y———— -t —— —
%8 %7 o2 O3 04 08 08 07 o8 o8 1
m«mmmq

Figure 24: Total cost per query in seconds vs. the
selectivity of the view predicate fv for 10,000.

47

As shown in Figures 25 and 26, semi-
materialization outperformed query modification and full
materialization for all values of fq.

The average cost per update for semi-~
materialization with a cardinality of 7500 was 1.5 seconds and
its cost per query was 64.5 seconds.

Semi-materialization's averaged costs for a
cardinality of 10,000 was 2.8 seconds for updates and 73.0

seconds for queries.

= 1004 / Loqend
| » Guery Modifioation

] / O Semi Mmeralization
< Ml Materialization

o — —

09 02 03 04 OS5 0¢ O7 08 O 1
—Selecivity ol rp query (FQI1)
Figure 25: Total cost per query in seconds vs. the
selectivity of the query in seconds on the view fq
for 7500 records.

48

0O Semi Matertalization
< Full Metertuiizetion

1&J / Lagend
100 - // » Query Modification

98 61 62 03 os o8 08 07 o8 o8
—Seleclvity of e query (FQ10)
Figure 26: Total cost per query in seconds vs. the
selectivity of the query on the view fg for 10,000

records.

The averaged costs for full materialization for
7500 records was 2.5 seconds per query and 256 seconds per
update.Query modification's costs averaged 116.0 c>conds for

7500 records and 150.6 for 10,000 records.

49

As expected semi-materialization was the clear
winner over both query modification and full materialization

over the entire range of 1 values.

—— _4_/\‘__,_/"
260 -
sm-
R.0.
iqnw Legend
! » Query Modifiostion
oY O Semi Maswsvisiization
< PFull Melerialization
e 10 20 80 40 &0 €60 70 &0 € 100
Number of wples per update (J12)

Figure 27: Total cost per query in seconds vs. the
number of tuples modified by each update 1 for 7500
records.

!1”- Legend

— ——— ¥ Query Mediicatien

O Semi Matsralzation
0 © Pull MateriaRzation
03 70 o 6 & & & 70 e 8 1%
Narnber of 1piee per update (US)

Figure 28: Total cost per query in seconds vs. the
number of tuples modified by each update 1 for 10,
000 records.

50

Semi-materialization's performance cost averaged
2.1 seconds per update and 18.8 seconds per query with a
cardinality of 7500 for all values of 1.

Similarly its averaged costs for 10,000 records
were 3.7 seconds per update and 20.2 seconds per query. Full
materialization's costs averaged 0.71 per query and 253
seconds per update with a cardinality of 7500. Its average
costs were 0.72 seconds per query and 421 seconds per update
for 10,000 records. Query modification had an average cost of
68.7 seconds per transaction for 7500 records and 103.2
seconds for 10,000 records.

The additional cost associated with using a hard
disk drive and increasing the cardinality had an impact on the
performance experienced for both query modification and full
materialization.

The cost for processing gqueries using query
modification on the hard disk increased three fold over the
cost of processing the query in RAM,

The cost of processing updates using full
materialization increased by 700% over the same cost for

updates in RAM but the cost for query processing only doubled.

51

The costs for semi-materialization also increased
by a factor of ten for updates and quadrupled for query
processing. The increase in processing costs for semi-
materialization was offset by the use of the redundant subsets
of the base relation which allowed for a more efficient
construction of the materialized view.

c. Discussion of Results for Model 2

Semi-materialization performed better with the
database in RAM and on hard disk for the entire range of
values of cardinality than both query modification and full
materialization for all parameters except for a value of P
less than 0.1. Full materialization performed better for P
less than 0.1 because its average cost per query was only .42
seconds while semi-materialization's cost averaged 15.4
seconds.

For values of P greater than 0.1 the cost for
performing a single update for full materijialization rose to
62.89 seconds for 5000 records in RAM, 250 seconds for 7500
recoras on nard disk,and 417 seconds for 10,000 records on
hard disk which offset any advantage offered by full

materialization superior performance for query processing.

52

This dramatic cost increase for update processing for full
materialization using general expression predicates is due the
lack of an efficient differential update algorithm. This
necessities the complete re-evaluation of the view definition
for any update transaction.

Query modification outperformed full
materialization for all parameters except for values of P less
than 0.35 for all values of cardinality. As indicated above
the cost of a single update transaction for full
materialization quickly drives its cost higher than an other
strategies.

In this case as the number of updates increased
the aggregate cost for query modification dropped since the
cost of updating base relations to support this strategy are
not timed. The cost of processing four or less updates
(average cost per update for query modification is 0) combined
aggregate cost for processing six queries (average cost per
query is 33.6 seconds) is more than the cost for processing
the same number of transactions for full materialization.

Full materialization's superior performance for
lower values of P is evident and is based its low cost for
processing queries on the view. This advantage was quickly
overwhelmed by the overhead of maintaining the fully

materialized view [Ref. 4].

53

Semi-materialization performed best on hard disk
for all parameters expect for a value of P of 0.1 or less.
Full materialization was the best performer for that value of
P because the only transaction performed for those values was
query processing.

As indicated above, semi-materialization is the
best strategy for processing view definitions using general

expressions for predicates.

It is interesting to note that the results shown
in Figures 17 <through 28 show that, in general, the
performance trends for the view processing strategies are the
same for P, fv, fq, and 1 for the entire range of values for

cardinality of POS.

54

V. CONCLUSIONS AND RECOMMENDATIONS
The purpose of this chapter is to state conclusions based
on the research and make recommendations for improvements and

further study on the three view materialization strategies.

A. CONCLUSIONS

The empirical data of this thesis confirms that the semi-
materialization strategy is best method for processing views
with predicates using general expressions.

The performance of semi-materialization with the database
in RAM exceeded the trends forecasted for general expressions
for the analytical model or actual results achieved on the
earlier experimental study [Ref. ?]. This is reasonable
because of the cost penalty paid by the strategy when it
becomes necessary to access a hard disk to perform updates and
queries.

The trends for the simulations for semi-materialization
with its database stored in RAM indicate it may be suitable
for near real time view processing using general expressions

based on its relatively low average costs for updates and

queries.

55

Full materialization performed well for lower values of P
due to 1its 1low average cost per query while Qquery
modification's performance was good over all parameter values
but both strategies are 1less efficient than semi-
materialization for general expressions.

Select-project-join view definitions with the database in
RAM proved to be the most cost effective method for view
processing (see Figures 9-12).

Overall performance for all parameter simulations using
this view definition and the ram disk drive were three to five
times faster than similar runs using a hard disk drive. These
savings are significant when considering view processing for

the small databases inherent to tactical environments.

B. RECOMMENDATIONS AND FUTURE RESEARCH

We recommend that the same simulations for select-project-
join and general expressions be conducted with an 80486
processor with a minimum of 16 MB of RAM to test databases
with up to 20K records. The internal 8k cache and math co-
processor should significantly reduce the processing times for
all three strategies using eitlier view definition.

We predict that this approach could improve the
performance of the semi-materialization strategy well enough

to make it feasible for use with real time tactical systems.

56

For example, the electronic order of battle maintained on
board a tactical aircraft could be completely updated during
or enroute to an engagement using information received by its
own sensors or sensor information passed from other sources.

This strategy could be used in conjunction with the Joint
Ocean Tactical Surveillance (JOTS) system to provide a real
time computer generated picture of the tactical and strategic
environments.

Used in this manner, JOTS could be placed on board classes
of ships which do not have the Naval Tactical Data System
(NTDS) installed on board at a tremendous savings over back
fitting the vessels with NTDS. The information would improve
the vessel's mission performance by keeping the Commanding
Officer constantly updated with real time battle group
position data and allow for the information received by that
vessel's sensors to be incorporated into the tactical picture.

We also recommend conducting more simulations on actual
databases with more than two relations, and updates aprlied to
several relations.

Finally, further work 1is needed to investigate the
performance of view processing strategies in the presence of

overlapping views over the same relation.

57

APPENDIX A. DATA GENERATION PROGRAM

58

/*Author: Curtis Barefield */

/*Title: Data Generation Program */
/®version: MS C 6.0 /Cs+ (r2) */
/*created: 17 June 91 */
/*updated: 11 Rug 91 ./

/'Q"...'.""..'..'Q.'QQ.."...."...'..."'.."'.‘Q.....'...Q..Q...'Q'.'..'..'..ﬁ....."l

* This program was written to replace the previous hardwired test database

* generating program with a more generic program. This program generates the text records?*

* used to create the database used to test the view materialization
* gtrategies purposed by Professor Magdi Kamel. The associated test

* pg has been written by Lt. Jesse South, USN. a CSM student in class PLO3.

-

-

"Q'Q'.'.....Q.'.'Q'"Q'..QQ'."..'..'.Qt."..'..."..'.......Q'iQ"'Q“C"'Q‘Q.‘Q..Q'Q..Q/

#include ¢stddef.h)

#include <stdio.h>

#include ¢stdlib.h>

#include <time.h>

#include <ctype.h>

#include <string.h>

#define size 16 /* sets buffer size for output file name */
#define ALPHA 1 /* set buffer for type/info values */
#define BOUND 6 /* set buffer for upper/lower bounds*/
/*DEBUG TOGGLE */

#define TROUBLESHOOTING o]

/* 1 sends debug data to output.txt file %/

/* prints data used for debugging pg */

void print_random_generator_array(int. int*®). print_bounded_array(int. long%);
/* used to read data into structs */

int rand(). count, incrementl, increment2. increment3, t:

long {n. resultsl. results2, results3:

/* modules used to generate random values */

unsigned timer. time_hack():

void srand(unsigned int)

FILE *input_file, *output_file: /* file pointers for text files ./

59

/.Q'."QQ..'.""Q'...Q.Q..'."..‘.sTRUCTS‘Q.'....QQ'Q...Q'.Qt......'ﬁ"".."....'.."'.Q"QQ."..'/
struct field_attributes
{

char field_type[ALPHA]:

int field width:

char field_information{ALPHA}:

char .ower_bound[BOUND]:

long increment:

char upper_bound{BOUND]:

struct field_attributes*next; R
}JATTRIBUTE:
struct spec_type .

{
long number_ of records:
int number_of fields:

char file name(size]:

struct field attributes *first_field:
struct spec_type *next:
}SPECIFICATION:

/* declares modules used to generate attributes ¢/
void type_alpha(struct field_attributes *):

void type_numeric(struct field attributes *);

void bounded_sequential array(long. long. int):

void type_alphanumeric(struct field_attributes *):
void counter(int. int):

void random_generator(int, int, int):

void print_database_specifications(struct spec_type *):
void random_long_array(long. long., long):

struct spec_type *list = NULL:

60

/'......".Q'Q.'...Q.QQ'.'.".QQ."MINQ"l".i'..'.""".'QQ.Q...."..QQ.Q../
void main()
{

char file_namelsize], field_type[ALPHA], field_informationlALPHA]:

char c_lower_bound[BOUND]. c_upper_bound[BOUND]:

long number_of_records:

int field_width, number of fields. i. increment:

/* creates and defines ptrs used for linked lists */

struct field_attributes *new_attribute= NULL:
struct field_attributes *next_field = NULL:
struct field_attributes *end = NULL:

struct spec_type *new_spec= NULL:
struct spec_type *top_spec = NULL:
struct spec_type *next_specs NULL:

list = NULL:
input_file= fopen(“data_in"."r"):
1f((input_file)==NULL){

printf("CAN NOT OPEN INPUT FILE\n"):
} /*opn input file*/
/* loads structs and creates linked lists */
while{!(feof(input_file)))
{
/* allocates memory for each specification struct */
new_spec * {(struct spec_type *)malloc{sizecf (struct spec_type)):
if(top_spec == NULL) /* sets ptr to top of linked list */
{

top_spac * new_spec:

next_spec = new_spec:

list = new_spec:

else

next_spec-inext = ncw_lpoc:/' sats ptr to next spec */

next_spec * next_spec->next;

61

/* read in data an¢ loads structs */

1£(1 != (fscanf(input_file."%1d".&number of records))){
printf(” UNEXPECTED VALUE. PROGRAM TERMINATED."}:
exit(0):
}

next_spec->number_of records=number_of records:

if(1 != (fscanf(input_file."%1d". &number of fields)))({
printf (" UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
}

next_spec->number_of fieldssnumber of_ fields:

if(1 t= (fscanf(input_file."%s".file name))){
printf(” UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
}

strcpy (next_spec->file name, file name):

next _spec->first_field = NULL:

next_spec->next s NULL:

/* create linked list for attributes */
for(i=0: i<next_spec->number of fields: ++i)
{

/* sllocates memory for attribute struct */
new_attribute =(struct field_attributes *) malloc (sizeof(struct field attributes)):
if(next_spec->first_field == NULL)

{

next_spec->first_field = new_attribute: /* sets ptr to top of list %/

end = next_spec->first_field:

else

end->next * new_attribute: /* sets ptr to next attribute */
end = end->next:
}
/* load attribute struct */
1£(1 = (fscanf(input_file."%s” field_type))){
printf (" UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):

}

62

strcpy(end->field type, field_type):

if(1 != (fscanf(input_file, "%d".&field width))){
printf (" UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
)

end->field width=field width:

if(1 t= (fscanf(input_file,k"¥s", field_information)}){
printf(” UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
}

strcpy(end->field information.field information):

1£(1 '= (fscanf(input_file,"%s",c_lower_bound))){
printf{" UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
}

strcpy(end->lower bound,c_lower_bound):

1£(1 != (fscanf{input_file L "%d", &increment))){
printf{” UNEXPECTED VALUE. PROGRAM TERMINATED."}:
exit(0):
}

end->increment = increment:

1f(1 != (fscanf(input_file,K "¥s” c_upper_bound))){
printf(” UNEXPECTED VALUE. PROGRAM TERMINATED."):
exit(0):
}

strcpy (end->upper_bound.c_upper_boundj:

end ->next =NULL:

}

fclose(input_file):
/* Redirects monitor output to text file called output.txt
#if TROUBLESHOOTING
freopen(“output.txt”,"w” stdout):
print_database_specifications(liet):
t=0:
#define DEEP_DEBUG 1

fendif

63

*/

/* uses system time to generate random number */
timer=time_hack():
srand(timer);
/% uses linked list to read each spec (BEGIN PG EXEC) */
while(list != NULL)
{
resultsl=0: /* gets module “counter” to zero */
results2=0:
results3=0:
increment1s0;
increment2s0:
increment3=Q;
output_files fopen(list->file_name, "w"):
if((output_file)==NULL){
printf (“CAN NOT OPEN QUTPUT FILE\n"):
exit(0):
} /*opn output file®/
/* BUILD DATABASE TEXT FILES */
for(in=0:in<list->nuaber_of_records:++in)
{
next_field = list->first_field:
count=0;
while(next _field !=NULL)
{
if(next_field -> field_type[O}=='A’)
{
type_alpha(next_field):
}
else if(next_field -> field type(Q]=='N")
{
type_numeric(next_fileld):
}
elee if(next_field -> field type(O]=='0")
{

type_alphanumeric(next_field):

64

next_field = next_field->next:
if(next_field !=NULL){
fprintf(output_file ":"):
}
}
fprintf{output_£file."\n"):
}
list = list->next;
fclose(output_file):
}
exit(0):

}

/..".'.'.'..'.'...."'.'..'."Q"'...Q.Q.'.'Q'.'.'..Q'.'.'...."...'

* Time Hack uses the system clock to provide the seed value .

. for the rand and srand library functions. *

Q.....Q'..'QQ..'.."'..'Q'..Q.'.".'..'QQ..Q"....QQQ.".'.'.Q"..Q.Q/
unsigned time hack()
{
clock_t rand_input;
unsigned seed_input:
rand_input=clock():
seed_input={unsigned)rand_input:
return({seed_input):

}

/.t'.".t'.""'.'t'.QQ.Q".Q"..."0..."QQ'.QQ."QQ.QQ...'.Q'.QQ'.'..

» Bounded sequential array .

. creates a bounded array which is used with the rand() library *
A function to select from a user specified number of array A
. elements to return a valua from within that array. *

...'.'Q.IQ".Q.Q..‘..0'.Q'.Q"QQ"Q...QQQOQ..'.".'t."'.'.'!.'.'..'.i.t/
void bounded_sequential_array(long_increment., long_lower_bound. int number_ of values)
{

int ». long_index:

long *long_storage.long_low:

/* allocate storage space in memory for array */

long_ltorago-(long')calloc(nu-ber_of_vclucl,liznot(long)):

65

/* £i11 array */
long_storage(0)=long_low=long_lower_bound:

for(m=1: m¢ number of values: me++)

{

long_storage{m]=long_low +=long_increment:

}
/* select value fm array using generic random generator ¥/
long_index=(rand()%number_of values):
fprintf(output_filt,"3051d",long_ltorigellong_index]):
it DEEP_DEBUG

12l

print_bounded array(number of values. long storage):}

tes:
#endif
}
Junene 'T1 2122121} * - (A2 12241232 1TTT] 1Y) ARRREAANRORNERANARNNAS
- Type alpha generates alpha character string to fill user d
hd determined field size *

----- L1444 e i aad 2l 2l s ilddd L2 2 2222) (22222202 *e ---/

void type_alpha(struct field attributes *next_field)
{

char c:

static char starts'p’'-1:

int j, increment. lower_bound. upper_bound:

int number of values:

long_increment. long_lower bound;

/e%%esse Conversions for Random Generator *eesessttwes,
lower_bound=(int) (next_field -~>lower_bound(0]):
uppar_bound=(int) (next_field ~>upper_bound{0}):
incresent=next_field ->increment:

/0000200004 04¢ Conversiona for Bounded Array *Heesese/
long_lower_bounds=(atol) (next_field ->lower_bound):
long_incresente=next_field ->increment:

number _of vslues=(atoi)(next_field ->upper_bound):

if(next_fieid ->field_inforwation{Q}«='R’) /® Random field selected */
{

random_generator(increment. lower_bound. upper_bound):

66

else if(next_field ->field_information(O]l=='B') /* Bounded sequential field

selected */

bounded _sequential_array({long_increment, long_lower bound. number of values):
}
else if(next_field ->field_information(O0]=='X"}!'D"}

/* countup counter places chars 'A'-'Z' in field */

for(j=0;: j¢<next_field ->field width:++j) /% sets field width */
{

if(stare >='2")

{

start= ‘A’

else

somtart:
}
fprintf(output_file,“Sc”.start): /* prints alpha char to

output file */

}
/.QQ.."Q."Q""Q"'Q.QQ.."."’..Q'.O.QQ..'Q.'...!Q'..QQ.Q'QQQQ.
. Type numeic generates numeric chararters to fill user *
hd determined field size -
BRAENGANER RN RRAARLENANRRCERANNEERRRN NN RSN ARRARIRND NGO RSN CRONEDN /
void type_numeric(struct field_attributes ®"next field)
{

char c:

static sterte’'0’'-1;

int j, lower_bound. increment, upper_bound:

int nusber of values, increment c. lower_bound c:

long_incresent. lonq_lounr_bound. incresent_long_array:

long lower_bound_long_array. upper_bound_long srray:

67

/Q.QI.'.'.".' Conversions for Counter ...Q.".Q.Q"../

increment_c = next_field->increment:

lower bound_c =(atoi) (next_field->lower_bound}:

/o*neass Conversions for Random Generator #*etvwassdwss,
lower_bound=(int) (next_field ->lower_bound[0]):
upper_bound=(int)(next_field ->upper_bound[0]):
increment=next_field ->increment:

/Renaetsssatd® Conversions for Bounded Array *eeeeesw/
long_lower_bound=(atol)(next_field -~>lower_bound):
long_incrementsnext_field ->increment:

number_of_ values=s(atoi)(next_field ~->upper_bound):

/Annessanstnes Conversions for Random Long Array *eesetes,

lower _bound_long_array =(atol)(next_field -»>lower bound):
increment_long_array ={long) (next_field ->increment):
upper_bound_long_array =(atol) (next_field ->upper_bound):
if(next_field ->field_information(0]=='S’) /* sequential counter */

{

counter(incremant_c. lower_bound c):
countes;

)

else if(next_field ->field information{O)s='R') /* Random */

{

random_generator(increment. lower_bound., upper_bound):

}

else if(next _field ->field information(O]=='8') /* Bounded sequential */

{

bounded_sequential_array(long_increment, long_lower_bound. number_of_ values):

}

else if(next field ->!£old’1n!or-ction[ol--‘x') /* Random long array */

{

random_long_array(increment_long_array, lower_bound_long_array, upper_bound_long_array):
}

else {f(next field ->field_information(0]=='D")

68

/* countup counter, fills field with "0’ - ‘9 in sequence */

for(J=0:j<next_field ->field width:++j} /* sets field width */
{

if(start >='9")

{

start= '0°;

else

+sptare;
}
tprintf{output_file. "Xc".start): /* prints numeric char to

output file */

)

P T Y Y I T TP R T AT PR A T Y Y
. Type alphanumeric generates alphanumeric chararters to fill d

b user determined field size .

I'I'QQ..'Q..'.'QQ'QQ..'I.'Q'..QQ........"...Qt'...t.."..'......ﬂt.'.'./
void type_alphanumeric(struct field_attributes *next_field)
{

char c, d:

int j. k /*, count=Q®/

static char alpha=’'A’-1:

static char numerice'0'-1:

int alpha_field_width, numeric_field width:

alpha_field_width=(atoi) (next_field ->lower bound)}:

nuseric_field_width={atoi)(next_field ->upper_bound):

69

for(j=0:3jcalpha_field width:++J) /* generates alpha chars

{

}

if(alpha >='2")
{

alpha="A’;

else

++alpha:

}

fprintf(output_file. "%c”.alpha):

for(k=0:k«numeric_field width:;++k) /* numerics '0'-'9°' */

{

1f(numeric >='9")
{

numerics='0";

else

+enuneric:

}

fprintf{output_file. "Xc".numeric):

70

‘R-tZ

*/

[4

-

/ Y L L L R P T T e a2 AR A A a2 L P22 PO 24028 2 2 adadsd)

- Random generator takes a lower., upper and *
hd increment int value. creates an numeric array and .
. uses the functions rand({) and srand() to -
. select an array element which .:zybe converted to a *
hd alphanumeric char for printing to the output file. *

...'.....'.'....'..'..Q..Q...'Q..'."'.'."'.'Q..Q.Q..'.Q.......Q.'.‘..Q/

void random_generator{ int increment. int lower_bound. int upper_bound)
{
/* Declare module data elements */
int numeric_index:
int output_from_array:
int gonoratc_nuncric_arrny(1nt,int,1nt):
char alnum_character_ocutput:
/® Compute array size */
numeric_index= ({upper_bound-lower_bound)/increment);
/* Determine if a set of bounded random numbers are required */
if{((lower_bound>47)&ak({upper_bound«58)) |. (lower_bound>64)&&(upper_bound«91))
{
output_from_array* generate numeric_array(numeric_index. increment. lower_bound):
alnum_character_output=(char)(output_from_array):

fprintf(output_file, "X04c”.alnum_character_output):

else

output_from_array* generate numeric_array{numeric_index. increment. lower bound):

fprintf(output_file. "X04d4". output_from array):

71

/......Q'.'.'...'.."..'Q.".Q'I..Q..Q.'Q.'."'.t.'.'."'....'..Q"QQ..'

*

Random long array ~akes a lower. upper and *
increment long value, creates an numeric array and b
uses the functions rand() and srand() to -

select an array element which is printed to *
the output file. *

".'.Q'...'.Q"..'."".'.'...."’...'...Q"".'..."!.""l....."'...'/

vold

random_long_array(leng increment_long_array. long lower_bound long_array.

upper_bound_long_array)

{

/* Declare module data elements */

m. index:

long numeric_index. low:
long 'output_fron_.rray:
long output_from_random:
/* Compute array size */
numeric_index= ((upper_bound_long_array-lower_bound_long_array}/increment_long array):

if (numeric_index<20)

/* Allocate memory block for long array*®/

output_from_array* (long®)jcslloc(numeric_index. sizeof(long)):
/* Set lower bound of array */

output_from_array{O]= low= lov‘r_bound_long_.rr-y:

/* Load array */

for(msl:m¢numeric_index:mes)

output from_array(m]= lows= increment_long_array:

index= (rand()snumeric_index):

fpri~cf{output_file."%041d".output_from_array(index]):

output_from_random= (1+(rand()supper_bound_long_array))}:

fprintf(output_file. "%041d".output_fros_random):

72

long

/.QQ""""...I'.."....'.'...'.'."'.'.Q'..'.'.'."Q.i..'.."'i."."t'
- Counter uses lower bound and increment to act as hd
ot a sequential counter for max of numbers per spec_type. d
'Q".Q."Q...'.'"Q'."."Q."'...."Q.Q."Q.'ﬁ.Q.'t’!'t.QQ."Q'.""Q"Q/
void counter(int increment_c. int lower_bound_c)
{
/..".'."Q'.‘ FIRST COUNTER .QQ'Q'Q'Q.'/
if((in=30)&&(resultsl==0)&&{count==0))
{
resultsl = lower_bound_c:
incrementl = increment _c:
}
elgse if(count==0)
{
resultsl = resultslsincrementl:
}
if(count==0}{
fprintf(output_tile,L "%041d", resultsl):}
/.Q"."..'i SECOND COQUNTER .Q'Q.‘QQ..../
if{(in=20)&&(results2+20)&&{count==1))
{
results2 = lower_bound_c:
increment2 = increment_c:
}
else if(count==1)
{
results2 = results2+increment2:
}
if{countael){
fprintf(output_file L "%041d" . results2);}
/'QQ‘."‘.'QO THIRD COUNTER ..Q"'.Q’t../
1f((ins=0)&a(results3==0)&&(count==2})
{
resultsa3 = lower_bound c:

increment3 = increment_c:

73

else {f(count==x2)
{
results3 = results3sincrement3:
}
if(count==2){
fprintf(output_file, "¥041d", regults3):}

/...."Q"Q".Q.'.'....'...Qt'...."".'./

}

/"'..QQ'...'.Q.Q.'.'....‘Q..Q'.'..".Q....QQ'QQQQQ.'t..'..."...'..'..Q'

* Generate numeric array produces a bounded o
* array and uses the rand() function to simulate a real *
. random number generator *

"Q......Q.'Q'.Q'.ﬁ.'.'.’..'.’......Q..."'.'t.."'i'..""Q..QQ'.'..".'/

int generate_numeric_array(int numeric_index, int increment,

int lower_bound)

int », index:
int *numeric_storage, low:
numeric_storage=(int*)calloc(nuneric_index,sizeof(int)):
numeric_storage(O]a low = lower_bound:
for(m=1: m<numeric_index: =.+)
{
numeric_storage[m]}=low += increment:
}
index=(rand()Xnumeric_index):
return(nuneric_storage(index]):
#if DEEP_DEBUG
1£(eel){
print_randos_generator_array(numeric_index. numeric_storage):}
tes:

#endit

74

/'....".'..Qt PRINT RANDOM GENERATOR ARRAY '..'.'.."Q.Q..'Q"""'..'Q../
void print_random_generator_array(int numeric_index.int *numeric_storage)
{

int 1i:

for(i=0:icnumeric_index:ie+}{

printf(” array[%d] = xd\n".i.numeric_storage{i]):

}

/..."Q"'.'."QQ PRINT BOUNDED ARRAY .Q.Q.'..'.Q'..QQ'."...'.."'Q..'."/
void print_bounded_array(int number_of values.long *long_storage)
{

int i;

for(i=0:icnumber of values:i++){

printf(” array[%d] = %051d\n".i.long _storage(i]):

}

/.'...'Q'."....."Ql'...""'."'."....'...'.'...'.'."'.'..Q..".'

. Prints specifications including all attribute link lists *

.Q."..Q...'."Q....."Q..."'.QQ.Q'l"."Q.t".."'.....Q"Q...'.'../
void print_database_specifications(struct spec_type *list)
{
struct field attributes *next field:
int i, 1=0:
printf("Printing link lists for generic database generator\n”):
while(list !=NULL)

{

printf{"\tSPEC %d\n", ++1);
printf("\tThere will be ¥ld records\n” list->number of_records}:
printf("\Tthere will be %¥d fields\n". list->number of_fields):
printf(~“\tThe f{le name is Xs\n".list->file name):
next_field = list->first_field:
while{next_field !sNULL)
{
printf(~\tPfield Xd:\n", +ei):
printf(~\tXs is fleld type\n~.next_field->field_type):

printf{"\txd is field width\n".next field->field width):

75

printf(“\t%s is field info\n" next_field->field information):
printf("\t%s is lower bound\n" . next_field->lower bound):
princf("\t%ld is increment\n" .next field->increment):
printf("\t%s is upper bound\n”,next_field->upgper bound):
next_field » next_field-»>next:

}

list = list->next:

76

APPENDIX B. VIEW MATERIALIZATION SIMULATION PROGRAM

77

/* Title : View Materialization Simulation (vsgxpdp7) */
/* Author : Jesse T. South L7
/% Date : 17 June 1991 ~/
/* Revised : 25 July 1991 */
/* Modified : for general expressions 22 AUG by Curtis Barefield */
/* Purpose : Thesis Research ./
/* Systen : IBM 80286 clone/ B80386SX v/
/* Compiler : Microsoft € 6.0, INGRES precompiler, (Borland Ce+) */
/* Description : The program is part of a thesis */

#include ¢stdio.h>

#include «stdlib.h>

#1include <time.h>

#include «math.h>

exec sql include sqlca:

#define size 16

#define dbinfo "info.dat”

#define cntrlfl “cntrl.dat”

#define update_file "data_in”

#define finralt "fnlrslt.dat”

#define runrslt "rnrslt.dat”

exec sql begin declare section:

#define empinfo "empdat.dat”

#define posinfo “posdat.dat”

#define skilinfo “skildat.dat”

#define updatinfo "update.dat”

exec sql end declare section:

void open_files(FILE*®, FILE®*, FILE**):
void close_files(FILE*®, FILE*®, PFILE®®):
void {nit_test_database(int):

void scan_dbinfollong®. long®, long*, int*, int* int*, long*, long*. long*):
void create_tables(void);

void create_views(int):

void creste_update_table(void):

vold copy_base_tables(void):

void copy_semi{ n_full mats(int):

void creste_table_index(void):

void module_qm(char. int, long. double®. FILE®):

void module_sm(char. int, long. double®, FILE®);

78

void
void
void

void

void

vaid

void
void
void

{

module_fm(char. int, long. double®, FILE®);
write file_headings(char®. char*, FILE¥, FILE*):
write_run_result(char. char. int. long, double, long. FILE®):
write_final result(int. int, long. int, long. long. long. float.

float, float. float. float, double. double, double, FILE®. FILE*):
compute_avg_time(int. double*®., double®, double?):
compute_fv_and_fq_and_P(int, int. int. int, float*®., long. long. long.

long. float®, int. int, float*):

compute_table counts(long*. long®*. long®, long. float®. float*):
refresh_update_text file(long. long, long):

main(void)

int K, Q. updat_siz, i. run_cnt = 0, zero = O:

int vmax. vbase. vincr. viewcut:

long ecard. pcard. scard. countb. countv, countq:

long qmax. gqbase. gqincr. querycut:

float fv, fva. fq. fqa, P:

double timeqm, timesm, timefm:

char QUERY =~ 'Q', UPDATE = 'K’:

char *pra_ptr. parameter([10]), *updt_ptr. updat_rel[10];

FILE *cntrl_fl, *fresult_fl, *run rslt:

prm_ptr » ¶meter(0]:

updt_ptr = &updat_rel[0]:

open_files(&run_rslt, &cntrl_fl, &fresult fl):

scan_dbinfo(&pcard. &ecard. &scard, &vmax, &vbase, &vincr, &qmax, &gbase.

&qincr):

while(!feof(cntrl_£1))

{

timeqm = timesm * timefm = 0.0:

countb = countv = countq = 0O:

fscanf(cntrl_f1l, "xd ¥1d %d xd %d ¥s ¥8", Gviewcut. &querycut, &K, &Q.
&updat_siz. pre_ptr. updt_ptr):

if (run_cnt == zero) write_file headings(prm _ptr. updt_ptr, fresult_ fl.

run_rslt);
init_test_database(viewcut):
run_cntes:

printf("\n run # %d\n”, run_cnt}:

79

for(f = 0: {4 < K: {++)
{
refresh_update_text_file(pcard. i. updat_siz):
module_qm(UPDATE. viewcut, querycut, &timeqm. run_rslt):
module_sm(UPDATE. viewcut. querycut, ×m. run_rslt):
module_fm(UPDATE, viewcut, querycut. &timefw. run_rslt):
}
for(i = 0;: 1 < Q: i+e}
{
module_qm(QUERY, viewcut. querycut, &timeqm. run_rslt):
module_sm(QUERY. viewcut, querycut. ×m. run_rslt):
module_fm(QUERY, viewcut. querycut, &timefm, run_rslt):
}
compute_avg_time(Q, &timeqm. ×m. &timefm):
compute_fv_and_fq_and_P(vmax, vbase. vincr, viewcut. &fv, qmax. gbase,
qincr. querycut. &fq., K., Q, &P):
compute_table_counts(&countb, &countv, &countq, querycut, &fva, &fqa):
write_final_result(run_cnt. viewcut, querycut, updat_siz, countb, countv.
countq, fv, fva, fq, fqa. P, timeqm. timesm, timefa.
fresult_fl. run_rslt):
exec sql disconnect:
systen("rmingres”):
}
close_files(&run_rslt, &cntrl_fl, &fresult_f1):
printf("\ndisconnect complete\n”):

}

80

void init_test_database(int viewcut)
{
system(destroydb magdi”):
system({“createdb magdi"):
system(”addingres -B -D64000"):
exec 8ql whenever sqlerror stop:
exec &ql connect magdi:
Create_tables():
create_views{viewcut):
copy_base_tables():
copy_semi n_full mats(viewcut):
create_table_index(}:
}
void open_files(FILE **run_rslt, FILE **cntrl_fl, FILE **fresult_fl)
{
*cntrl_f1 = fopen{cntrlfl, “r"):
*fresult_f1 = fopen(finrelt, "a"):
*run_rslt = fopen(runrsit. "a”):
1f((¢®run_rslt) !} (:!%cntrl_f1l) .. (!*fresult_f1))
{
printf (" \nERROR: control or output files did not open”):
fcloseall():
exec sql disconnect:
exit(l):
}
}
void close_files(FILE **run_rslt. FILE **cntrl_t1, FILE **fresult_fl)
{
int {:
fprintf(*fresult_f1."\n"):
for (1#0:1¢80:1++) fprintf(*fresult_fl1."*"):
fclose (®run_relt):
fclose (®cntrl f1):

fclose (*fresult_f1):

}

81

void scan_dbinfo(long® ecard, long® pcard. long® scard. int® vmax, int* vbase.
int® vincr, long® gqmax, long® gbase. long® qiner)
{
FILE* db_info:
db_info = fopen(dbinfo, “r"):
if(:db_info)
{
printf (" \NERROR: dbinfo file did not open "):
fcloseall():
exec sql disconnect:
exit(l):
}
facanf{db_info. "%1d Xx1d %1d\n". &*ecard, &*pcard. &*scard):
fscanf(db_info. "%d %d %d\n", &*veax. &*vbase. &*vincr):
fscanf(db_info. "%ld %1d %14". &*qmax, &*qgbase, &*gincr):
fclose(db_info):
}
void create_tables()
{
/* create query modification tables */
exec 8qi create table posqm
(e_num integer2. snum integer2. level integerl. keyno integer2.
accinfo c86):
exec sql create table ezpqm
(e_num integer2, dnum integer2, ename c20, address c70.
salary integerd4. title c30, jobdesc c60):
exec sql create table skillqm
(wnum integer2, sname c20, stype c34):
/" create semi-materialization tables */
exec sql create table possa
(e_num integer2. snum integer2, level integerl. keyno integer2.
accinfo c86);
exec sql create table empsa
(e_num integer2, dnus integer2, ename c20, address c70,
salary integerd4. title c30. jobdesc <¢60):
enec 8ql create table skillsa

(snum integer2, sname c20, stype c34):

82

exec sql create table pos prim
(e_num integer2, keyno integerl):
exec sql create table emp_prian
(e_num integer?., ename c20. salary integer4):
/* create full materialization tables */
exec sql create table posfm
(e_num integer2, snum integer2. level integerl. keyno integer2,
accinfo c86):
exec sql create table empfm
(e_num integer2, dnum integer2. ename c20, address c70.
salary integerd, title c30, jobdesc c60):
exec sql create table skillfm
(snum integer2, sname c20. stype c34):
exec sql create table full mat
(e_num integer2, ename c20, salary integer4. keyno integer2)
}
void create_views(int viewcut)
{
exec sql begin declare section:
int view_cut:
exec oGl end declare section:

view_cut = viewcut:

—=2x8c gl Creats view full view(e pum. ename. salary, Kevno) as

83

)

void create_update_table()

{

exec sql create table update_tbl

(e_num integer2, snum integer2. level integerl. keyno integer2,

accinfo c86):

exec sql copy table update_tbl

(e_num = cOcolon, snum= cOcolon. level » cOcolon.

keyno = cOcolon, accinfo = cOnl)

from :updatinfo:

}

void copy_base_tables{)

{

exec sql copy table posqm
(e_num = cOcolon. snum =
accinfo = ¢Onl)
from :posinfo:

exec sql copy table possm
(e_num = cOcolon, snua =
accinfo = <eOnl)
from :posinfo;

exec sql copy table posfa
(e_num = cOcolon. snum =
accinfo = cOnl)
from :posinfo:

exec sql copy table empqe

(e_num = cOcolon, dnus =

cOcolon,

cOcolon,

cOcolnn,

cOcolon.

level

level

level

enane

cOcolon, keyno = cOcolon,

cOcolon. keyno = cOcolon.

cOcolon, keyno » cOcolon.

cOcolon. address = cOcolon.

salary = cOcolon, title = cOcolon. jobdesc = <Onl)

froms :empinfo;

84

exec sql copy table empsm
{e_num = cOcolon, dnum = cOcolon. ename = cOcolon. address = cOcolon.
salary = ¢Ocolon, title = cOcolon, jobdesc = cOnl)
from :empinfo:
exec sql copy table empfm
(e_num = cQcolon. dnum = cOcolon. ename = cOcolon. address = cOcolon.
salary = cOcolon, title = cOcolon., jobdesc = cOnl}
from :empinfo:
exec sql copy table skillqm
(snum = cOcolon., sname = cOcolon. stype = cOnl)
from :skilinfo:
exec aql copy table skillsm
(snum = cOcolon. sname = cOcolon. stype = cOnl)
from :skilinfo:
exec sql copy table skillfm
(snum = cOcolon. sname = cOcolon. stype = cOnl)
from :skilinfo:
}
void copy _semi_n_full mats(int viewcut)
{
exec sql begin declare section:
int view_cut:
exec sql end declare section;
view _cut = viewcut:
exec sql insert into pos_prim (e_num. keyno)
selact @ _num. keyno
from possm
where level >= :view_cut:
exec sgl insert into esmp_prim (e_num. enawe, salary)
select ¢_num. enase, salary

from empsm:

85

void create_table_index{)

{

exec 8ql
exec sql
exec sql
exec 8ql
exec sql
exec sql
exec s8ql
exec sql
exec sql

/'

modify
modify
modify
modify
modify
modify
modify
modify

modify

enpqm
enpsm
empfm
posqm
possa

posfm

to

to

to

to

to

emp_ prim

pos_prim

full _mat

cbtree on e_num:
cbtree on e_num:
cbtree on e_num:
cbtree on level:
cbtree on level:
cbtree on ievel:

to cbtree on salary:
to cbtree on e_num:

to cbtree on salary:

create secondary indexes */

exec sql create index empqmdx

on empqm (e _num):

exec 8q] create index empsadx

on empsm (e_num):

exec sql create index empfmdx

on empfn (e_num):

exec sql -“reate index posqmdx

on posqm

(level}:

exec 8ql create index posssdx

on possm (leavel):

exec sql create index posfmdx

on posfm (level):

exec sg)l create index e_primdx

on emp_prim (salary):

exec $ql create index p_primdx

on pos_prim(e_nus):

86

exec sql create index f matdx
on full mat (salary):
}
void module_gm(char cntrl_char, int viewcut. long querycut, double *timeqm.
FILE *run_rslt)
{
clock _t tstart = 0. tstop = O:
double elap_time:
long tbl_cnt = O:
exec sql begin declare section:
int view_cut:
long query_cut:
long qnum:
char qname(21]:
long qkeyno:
exec sgql end declare section:
exec sql declare qm cl cursor for
select e_num, ename. keyno
from full_view
where salary >= :query_cut:
view_cut = viewcut:
query_cut = querycut:
switch{cntrl_char)
{
case ‘'K':
crtata_upd.tc_tnblo():
exec sql insert into posqm
select *
froms update_tbl:
exec sql drop update_tbl:
break:
case 'Q":
tstart = clock():
exec sql open qm_cl:

exec 8q]l whenever not found goto closeqm cl:

87

while(sqlca.sqlcode == Q)
{
exec sql fetch gm_cl
into :qnum, :gqname. :gqkeyno:
/* printf("\nnumber = %d", gqnum): */
tbl _cntes:
}
closeqm cl:
exec sql whenever not found continue:
tatop = clock():
exec sql close qm_cl:
break:
default:
printf("\nlncorrect control character\n”):
break:
}
elap_time = (tstop - tatart)/(double)CLK_TCK:
*timeqm » *timegm + elap_time:
write_run_result(’'q’. cntrl char, viewcut. querycut. elap_time, tbl _ent.
run_rslt):
}
void module_sm(char cntrl_char. int viewcut, long querycut. double *timesm.
FILE *run_rslt)
{
clock_t tstart = O, tstop = O:
double elap_time:
long tbl_cnt = 0:
exec sql begin declare section:
int view_cut:
long query_cut:
long snums:
char sname{21]:
long skeyno:

exec sql end declare mection:

88

exec sql declare swm_cl cursor for
select e_num. ename, keyno
from sm_view
where salary >= :query_cut:
view cut = viewcut:
query_cut = guerycut:
switch(cntrl _char)
{
case 'K':
create_update_table();
exec sql insert into possa
select *
from update_tbl:
tstart = clock():
exec xql insert into pos_prim
select e_num, keyno
from update_tbl
where level >= :view cut;
tstop = clock():
exec sql drop update_tbl:
break;
case 'Q°':
tstart = clock():
exec sql open sa_cl:
exec sgl whenever not found goto closeam cl:
while (sqlca.sqlcode == 0)
{
exec sql fetch sm _cl
into :snum, :sname. :skeyno:
/* printf(“\nenum = %d”, snus): */
tbl_cnte+s:
}
closesa _cl:
exec sql whenever not found continue:
tstop = clock():
exec sgql close sa _cl:

break:

89

default:
printf{“\Nincorrect control character\n”):
breaic:
}
elap_time = (tstop - tstart)/(double)CLK_TCK:
*timesm = *timesm + elap_time:
write_run_result('s’. cntrl_char. view at. querycut. elap_time. tbl_cne,
run_rslt}:
}
void module_fm(char cntrl_char. int viewcut., long querycut. double *timefm.
FILE *run_rsit)
{
clock_t tstart = 0. tstop = 0:
double elap_time;
long qent = Q:
exec sql begin declare section:
int view_cut:
long query_cut:
long tbl_cnt:
long fnum:
char fname(21}:
long fkeyno:
exec sql end declare section:
exec sql declare fm_cl cursor for
select e _num, ename. keyno
from full mat
where salary >= :query_cut:
view_cut = viewcut:
query_cut = querycut:
switch(entrl_char)

{

90

case 'K':
create_update_table():
exec sql insert into posfm
select *
from update_tbl:
tstart = clock():
—exec sql drop full pat:
———sxaC gl create table full mat
—{e_num integer2, ename ¢20. salary integers. keyno integerd):

tstop = clock():
exec sql drop update_tbl:
break:
case ‘'Q’:

tstart = clock():
exec sql open fm_cl:

exec sql whenever not found goto closefm_cl:
while (sqlca.sqlcode == 0)

{

exec sql fetch fm_cl

into :fnum, :fname, :tkoyng:

/* prinef("\n fnum = xd”, fnum)}: */
gentes:

)

clogefa _cl:

exec sql whenever not found continue:
tstop = clock():

exec s8ql close fa_cl:

break:

91

default:
printf{"\Nincorrect control character\n”):
break;
}
elap_time » (tatop - tstart)/(double)CLK_TCK:
*timefm = *timefm + elap_time:
exec sql select rowtot = count(e_num)
into :tbl_cnt
from full mat
where salary >= :query_cut:
write_run_result(’'f', cntrl_char. viewcut. querycut, elap_time, tbl cnt,
run_rslt):
}
void write_file_headings(char® param. char*® updt_tbl, FILE* fresult_fl,
FILE* run_rslt)
{
time_t today_t:
time(&today_t):
fprintf(fresult_f1."\n X8 - FINAL RESULTS (vsgxpdp?) -\n". ctime(&today_t)):
fprintf(fresult_f1."\n The %s is the parameter being tested”, param):
fprintf(fresult_f1."\n The s table is the table being updated”, updt_tbl):
fprintf(run_rslt."\n %s - RUN RESULTS (vsgxpdp?) -\n", ctime(&today_t)):
fprintf(run_rslt."\n The %s i{s the parameter being tested”. param):
fprintf(run_rslt."\n The ¥s table is the table being updated\n", updt_tbl):
}
void write_run_result(char strat, char cntrl_char, int viewcut. long querycut.
double elap_time., long tbl_cnt, FILE *run_rslt)
{
printf("\n¥cm cceXc vce¥d qce=%ld et=X.21f tc=x1d”, strat, cntrl_char,
viewcut, querycut. elap_time, tbl cnt):
fprintf(run_rslt, “\n¥cm cc=fc vcsfd qcetld ets%.21f tcexld”, strat.

cntrl_char, viewcut, querycut, elap_time, tbl_cnt):

92

void write_final result(int run. int viewcut. long querycut. int updt_siz,
long countb. long countv. long countq, float fv,
float fva, float fq. float fgqa. float P,
double timegm. double timesm., double timefm.
FILE *fresult_fl, FILE *"run_rslt)
{
printf(“\n\nRUN# %d, VCUT» %d. QCUT= %1d, #TUP= %d, BASE= %ld. VIEW= %1d."\
" QUERY= %1d”. run. viewcut. gquerycut. updt_siz. countb. countv,
countq):
printf("\nFVs %.2f. FVAs xf,6 FQ= %.2f, FQA= %f P= %.2f" fv, fva, fq,
fqa, P):
printf("\nTIMEQM= %.31f sec. TIMESM= %.31f sec, TIMEFM= %.31f sec\n",
timeqm, timesm, timefm):
fprintf(fresult_f1."\n\NRUN# %d, VCUT= %d, QCUT= %X1d., #TUP= %d. BASE= %1d."\
" VIEW= $1d. QUERY= %1d4", run, viewcut. querycut, updt_siz, countb,
countv. countq):
tprintf(fresult f1,"\NFVs X.2f, 6 FVA= Xf, FQ= X.2f, FQA= %f P2 X.2f" fv, fva,
fq. fqa. P):
tprintf(fresult_f1, "\NTIMEQM= %.31f sec, TIMESM= %.31f gec, TIMEFM= %.31f"\
" sec\n",timeqm, timesm, timefm);
fprintf(run_rslt,"\n\NRUN# Xd. VCUT= %d, QCUT= ¥ld. #TUP= %d, BASE= %1d."\
" VIEW= %1d, QUERY= %1d", run, viewcut, querycut, updt_siz. countb,
countv, countq):
fprintf{run_rslt,"\NFV= X.2f, 6 FVA= f, FQ= X.2f, FQA= Xf P= %.2f", fv, fva,
fq. fqa, P):
fprintf(run_rslt. "\NTIMEQM* X.31f mec. TIMESM= X.31f sec, TIMEFM= %.31f"\
" sec\n”,timeqm. timesa, timefa):
}
void compute_avg_time(int Q, double *timeqm, double *timesm, double *timefm)
{
i2(Q » 0)
{
*timeqm = *timeqm / (double)Q:
*timesm » *timesm / (double)Q:
*tipefm » *timefs / (double)qQ:

)

93

else

{

printf("\n\NERROR: dividing times by O. **** results are VOID *ne®\n");
}
}
void compute_fv_and_fq_and_P(int vmax. int vbase, int vincr. int vcut,
float *fv.long qmax. long gbase. long qincr.

long qcut, float *fq. int K, int Q. float *p)

#fv = (flost)(vmax) - ((float)(vcut - vbase) / (float)(vincr)):
*fy = (*fv + (float)(vincr) / (float)(vincr)) / (float)(vmax):
*fq = (float)(gmax) - ((float)(qcut - gbase) / (float)(gincr)):
*fq = (*fq + (float)(qincr) / (float) (gincr)) / (float) (qmax):
*p = (float)(K)/(float)(K + Q):
)
void compute_table counts(long *countb, long ®*countv, long *countq,
long querycut. float *fva, flos. *fqa)
{
exec sql begin declare section:
long query_cut:
long tbl_cnt:
exec sql end declare section:
query_cut = querycut:
exec sql create table base_mat
(e_num integer2, ename c20. salary integerd4. keyno integer2):
exec sql insert into base_mat (e_nus, ename. salary. keyno)
select empfm.e_num, empfm.ename, empfm.salary, posfm.keyno
from empfa. posfa
where eapfm.e_num = posfa.e_num:
exec 8ql select rowtot s count(e_num)
into :tbl_cnt
from base_sat:
®countb = tbl _cnt:
ezec sql select rowtot = count(e_num}
into :tbl_cnt
from full mst:

fcountvy = tbl_cnt:

94

exec sql select rowtot = count(e_num)
into :tbl_cnt
from full mat
where salary >s :query_cut:
*countg = tbl_cnt:
*fva = (float)((double)®countv / (double)*countb):
*fqa = (float)({double)*countg / {double)*countv):
exec sql drop base_mat:
}
void refresh_update_text_file(long card. long i, long update siz)
{
long update_base:
int num of fields. j, change_field = 4:
char file name{size] = updatinfo. *file ptr:
FILE *updat_f1l:

atruct field attrib

char fleld _type:

int field width:

char field_info:

long lower_bound:

int increment:

1ong upper bound:

struct field_attrib *next:

}:

struct field attrib *first_field = NULL:
struct field attrib ®current_field = NULL:
struct field attrib *print_ptr = NULL:
file ptr = &file_name(0]:

update_base = (i * update_siz) + card +1: /* compute new key base number */

95

/** Read old control input for data generation program **/
updat_fl = fopen(update_file. "r"):
if{'updat_£1)
{
printf{"\NERROR: update control file did not open to read”):
fcloseall():
exec sql disconnect:
exit(l):
)
facanf(updat_f1l. "%*d\n"):
fscanf(updat_fl. “%d\n", &num_of iields):
fecanf (updat_f1. “X*s\n"):
for (J = 1: § <= num of_fields: }++)
(
1 () == 1)
{
tirst_field = (struct field attrib®)malloc(sizeof(struct field attrib)):
if (first_field == NULL) printf("\NERROR: Memory did not allocate:!:!"):
current_field = first_field:
}
else
{
current_field->next s(struct fleld attrib®)malloc(sizeof(struct field attrib)):
current_field = current_field->next:
}
current_field->next = NULL:
facanf(updat_fl. "\n%c\n", ¤t_field->field_type):
facanf(updat_fl. "%d\n". Gcurrent_field->field width):
fecanf(updat_f1, "Sc\n". ¤t_field->field info):
fscanf(updat_f1. "%1d\n", ¤t_field->lower bound):
facanf(updat_f1l. “%d\n"., ¤t_fleld-’incresent):
facant(updat_f1. “%1d\n". ¤t_field->upper_bound):
it () == change_field) /* changing base for keyno field */
(
current_field->lower_bound = update base:
}
)

fclose{updat_f1):

96

;% write updated control input for data generation program
updat_fl = fopen{update_file. "w'l:
if(:updat_fl)
{
printf(" NERROR: update control file did not open to write'):
fcloseall():
exec sgql disconnect:
exit(l):
}
fprintf(updat_f1. “%ld\n". update_siz):
fprintf(updat_fl. “Sd\n”. num_of_ fields):
fprinct(updat_tl. "%a", file_ptr);
print_ptr = first_field:
while(print_ptr != NULL)
{
fprintf(updat_fl. “\n\nSc\n”, print_ptr->field_type):
fprintf(updat_f1. "sd\n". print_ptr->field width):
tprintf(updat_fl., "%c\n". print_ptr->field_info):
fprintfiupdat_fl. "%1d\n". print_ptr->lower_bound):
fprintf(updat_f1. "Sd\n", print_ptr->increment):
fprintf(updat_f1. "%1d”. print_ptr->upper_dound):
print_ptr * print_ptr-j>next:
}
fclose (updat_f1):
system({~“datagen”):

'

97

LIST OF REFERENCES

1. Date, C. J., An Introduction to Database Systems, 3rd Ed.,
Addison-Wesley Publishing Company, 1981,

2. Kamel,M., Davidson, S., Semi-materialization: a technnique
for optimizing frequently executed queries, Data and Knowledge
Engineering 6, North-Holland, 1991.

3. South, J., A performance Analysis of View Materializations
Strategies for Select-Project-Join Expressions, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1991.

4. Kamel, M., Davidson, S., Semi-materialization: A
Performance Analysis, University of Pennsylvania, 1987.

98

INITIAL DISTRIBUTION LIST

No. Copies

Library, Code 52
Naval Postgraduate School
Montere+, CA 93943-5002

Administrative Sciences Department
Naval Postgraduate School

Attn: Prof. M. N. Kamel, Code AS/KA
Monterey, CA 93943-5000

University of Rochester
U.S. Navy ROTC Unit
Attn: CDR R. Griffin
Rochester, NY 14627-0016

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

LT Curtis G. Barefield Jr.

Department Head Class 121

Surface Warfare Officer School Command
Newport, RI 02841-5012

99

2

